2,946 research outputs found

    Singularity results for functional equations driven by linear fractional transformations

    Full text link
    We consider functional equations driven by linear fractional transformations, which are special cases of de Rham's functional equations. We consider Hausdorff dimension of the measure whose distribution function is the solution. We give a necessary and sufficient condition for singularity. We also show that they have a relationship with stationary measures.Comment: 14 pages, Title changed, to appear in Journal of Theoretical Probabilit

    Structures of enzyme-substrate complexes of lysozyme

    Full text link

    Organized condensation of worm-like chains

    Full text link
    We present results relevant to the equilibrium organization of DNA strands of arbitrary length interacting with a spherical organizing center, suggestive of DNA-histone complexation in nucleosomes. We obtain a rich phase diagram in which a wrapping state is transformed into a complex multi-leafed, rosette structure as the adhesion energy is reduced. The statistical mechanics of the "melting" of a rosette can be mapped into an exactly soluble one-dimensional many-body problem.Comment: 15 pages, 2 figures in a pdf fil

    Polyelectrolyte Bundles

    Full text link
    Using extensive Molecular Dynamics simulations we study the behavior of polyelectrolytes with hydrophobic side chains, which are known to form cylindrical micelles in aqueous solution. We investigate the stability of such bundles with respect to hydrophobicity, the strength of the electrostatic interaction, and the bundle size. We show that for the parameter range relevant for sulfonated poly-para-phenylenes (PPP) one finds a stable finite bundle size. In a more generic model we also show the influence of the length of the precursor oligomer on the stability of the bundles. We also point out that our model has close similarities to DNA solutions with added condensing agents, hinting to the possibility that the size of DNA aggregates is under certain circumstances thermodynamically limited.Comment: 10 pages, 8 figure

    Analysis of electroencephalograms in Alzheimer's disease patients with multiscale entropy

    Get PDF
    The aim of this study was to analyse the electroencephalogram (EEG) background activity of Alzheimer’s disease (AD) patients using the Multiscale Entropy (MSE). The MSE is a recently developed method that quantifies the regularity of a signal on different time scales. These time scales are inspected by means of several coarse-grained sequences formed from the analysed signals. We recorded the EEGs from 19 scalp electrodes in 11 AD patients and 11 age-matched controls and estimated the MSE profile for each epoch of the EEG recordings. The shape of the MSE profiles reveals the EEG complexity, and it suggests that the EEG contains information in deeper scales than the smallest one. Moreover, the results showed that the EEG background activity is less complex in AD patients than control subjects. We found significant difference

    Long-Ranged Orientational Order in Dipolar Fluids

    Full text link
    Recently Groh and Dietrich claimed the thermodynamic state of a dipolar fluid depends on the shape of the fluid's container. For example, a homogeneous fluid in a short fat container would phase separate when transferred to a tall skinny container of identical volume and temperature. Their calculation thus lacks a thermodynamic limit. We show that removal of demagnetizing fields restores the true, shape independent, thermodynamic limit. As a consequence, spontaneously magnetized liquids display inhomogeneous magnetization textures.Comment: 3 pages, LaTex, no figures. Submitted as comment to PRL, May 199

    Role of Multipoles in Counterion-Mediated Interactions between Charged Surfaces: Strong and Weak Coupling

    Full text link
    We present general arguments for the importance, or lack thereof, of the structure in the charge distribution of counterions for counterion-mediated interactions between bounding symmetrically charged surfaces. We show that on the mean field or weak coupling level, the charge quadrupole contributes the lowest order modification to the contact value theorem and thus to the intersurface electrostatic interactions. The image effects are non-existent on the mean-field level even with multipoles. On the strong coupling level the quadrupoles and higher order multipoles contribute additional terms to the interaction free energy only in the presence of dielectric inhomogeneities. Without them, the monopole is the only multipole that contributes to the strong coupling electrostatics. We explore the consequences of these statements in all their generality.Comment: 12 pages, 3 figure

    Charge-Fluctuation-Induced Non-analytic Bending Rigidity

    Full text link
    In this Letter, we consider a neutral system of mobile positive and negative charges confined on the surface of curved films. This may be an appropriate model for: i) a highly charged membrane whose counterions are confined to a sheath near its surface; ii) a membrane composed of an equimolar mixture of anionic and cationic surfactants in aqueous solution. We find that the charge fluctuations contribute a non-analytic term to the bending rigidity that varies logarithmically with the radius of curvature. This may lead to spontaneous vesicle formation, which is indeed observed in similar systems.Comment: Revtex, 9 pages, no figures, submitted to PR

    Nuclear Spin-Lattice Relaxation in One-Dimensional Heisenberg Ferrimagnets: Three-Magnon versus Raman Processes

    Full text link
    Nuclear spin-lattice relaxation in one-dimensional Heisenberg ferrimagnets is studied by means of a modified spin-wave theory. We consider the second-order process, where a nuclear spin flip induces virtual spin waves which are then scattered thermally via the four-magnon exchange interaction, as well as the first-order process, where a nuclear spin directly interacts with spin waves via the hyperfine interaction. We point out a possibility of the three-magnon relaxation process predominating over the Raman one and suggest model experiments.Comment: to be published in J. Phys. Soc. Jpn. 73, No. 6 (2004
    corecore